Affiliation:
1. Soft Computing and Expert System Laboratory , ABV-Indian Institute of Information Technology and Management , Gwalior 474010, Madhya Pradesh , India
Abstract
Abstract
Intensive care units (ICUs) are responsible for generating a wealth of useful data in the form of electronic health records. We aimed to build a mortality prediction model on a Medical Information Mart for Intensive Care (MIMIC-III) database and to assess whether the use of deep learning techniques like long short-term memory (LSTM) can effectively utilize the temporal relations among clinical variables. The models were built on clinical variable dynamics of the first 48 h of ICU admission of 12,550 records from the MIMIC-III database. A total of 36 variables including 33 time series variables and three static variables were used for the prediction. We present the application of LSTM and LSTM attention (LSTM-AT) model for mortality prediction with such a large number of clinical variables dataset. For training and validation purpose, we have used International Classification of Diseases, 9th edition (ICD-9) codes for extracting the patients with cardiovascular disease, and infections and parasitic disease, respectively. The effectiveness of the LSTM model is achieved over non-recurrent baseline models like naïve Bayes, logistic regression (LR), support vector machine and multilayer perceptron (MLP) by generating state of the art results (area under the curve [AUC], 0.852). Next, by providing attention at each time stamp, we developed a model, LSTM-AT, which exhibits even better performance (AUC, 0.876).
Reference33 articles.
1. Global Health Estimates 2015: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2015. Geneva: World Health Organization
2. 2016 [cited 2018 August 25]. Available from: https://www.who.int/healthinfo/global_burden_disease/estimates/en/.
3. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 2011;123:933–44.
4. Le JG, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, et al. A simplified acute physiology score for ICU patients. Crit Care Med 1984;12:975–7.
5. Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 1981;9:591–7.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献