Approach to quantify the resistance of polymeric foams against thermal load under compression

Author:

Himmelsbach Andreas1,Standau Tobias1,Meuchelböck Johannes1,Altstädt Volker12,Ruckdäschel Holger1

Affiliation:

1. Department of Polymer Engineering, University of Bayreuth , Universitätsstr. 30, 95447 Bayreuth , Germany

2. Bavarian Polymer Institute and Bayreuth Institute of Macromolecular Research, University of Bayreuth , Universitätsstr. 30, 95447 Bayreuth , Germany

Abstract

Abstract Nowadays, numerous techniques are used to quantify the resistance of cellular polymers against a thermal load. These techniques differ in significance and reproducibility and are all dependent on foam density, structure (i.e., cell size and -distribution) and sample geometry. Very different behaviors are expected for extrusion- and bead foams, as well as for amorphous and semi-crystalline polymers. Moreover, established tests use temperature ramps which would lead to temperature gradients within the sample and thus to faulty results. In this study, we developed a new approach from an engineering perspective to minimize these influences. In this approach, the resistance against the thermal load is derived from a steady creep test with defined temperature steps under a mechanical load, which is specifically set for each foam sample depending on its static compression behavior at room temperature. The two-stage test therefore combines (i) a standard quasi-static compression test at room temperature and (ii) a creep test with stepwise increased thermal loading. For each foam type, a rather low mechanical load (stress) is determined from the quasi-static compression test at room temperature; low enough to remain below the collapse strength and avoid irreversible deformation (i.e., buckling and/or breaking of the cell walls). This load is then applied in a creep test where the temperature is increased in defined steps from room temperature to a temperature close to T g or T m . The stepwise increase and holding of the temperature for a defined time enables a homogeneous temperature in the test specimen. The approach was applied to (i) polystyrene extrusion and bead foams (i.e., XPS and EPS), which have different foam structure, (ii) amorphous and semi-crystalline bead foams of polystyrene (EPS) and polypropylene (EPP), (iii) bead foams with different densities (30, 60, 120, and 210 kg/m3) and (iv) to a new type of bead foam made of the engineering polymer polybutylene terephthalate (E-PBT). The termination criterion for the test is defined as the temperature at which a relative compression of 10% is reached in the creep test with temperature steps. We suggest calling it the heat stability temperature T HS. For the studied foams, the procedure delivers characteristic T HS values that allow a good comparison between different polymer matrices and densities. The heat stability temperature T HS of amorphous PS foams (i.e., XPS and EPS) was determined to be 98 °C, which is close to the glass transition temperature T g . Using the same approach, values of 99–107 °C were determined for EPP and 186 °C for the semi-crystalline bead foam E-PBT.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3