Incorporation of organic photochromic molecules in mesoporous silica materials: Synthesis and applications

Author:

Alenazi Maha H.1,Mubarak Ahmed T.1,Abboud Mohamed1

Affiliation:

1. Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University , Abha , 61413 , Saudi Arabia

Abstract

Abstract The ability to control the function and structure of some promising nanosystems using an external stimulus is attractive research to develop programmable and reconfigurable intelligent nanomaterials. The focal point of this review is the silicon-based nanoporous materials, and particularly the mesoporous silica materials (MSMs) class (pore size: 2–50 nm), due to their important intrinsic properties, such as high surface area, highly ordered nanostructure, narrow pore size distribution, various dimensions (one-dimensional, two-dimensional, and three-dimensional), and easily functionable. One of the most essential organic components that can be incorporated in MSMs is organic photochromic molecules (OPMs), such as azobenzene, stilbene, dithienylethenes, and spiropyrans. OPMs can be incorporated into MSMs, to form photochromic mesoporous organosilica materials (PMOMs), in two different ways: physical (non-covalent immobilization) or chemical (covalent immobilization) binding. PMOMs are considered smart nanomaterials because they have the ability to undergo reversible changes in the solid state when exposed to an external electromagnetic radiation. PMOMs have been the subject of many research studies during the last decade due to their potential applications, especially as chemosensors. This review discusses the main families of OPMs, their incorporation into MSMs using different methods, and the applications of some PMOMs as chemosensors.

Publisher

Walter de Gruyter GmbH

Reference146 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3