Development of (−)-epigallocatechin-3-gallate-loaded folate receptor-targeted nanoparticles for prostate cancer treatment

Author:

Alserihi Read F.12,Mohammed Mohammed Razeeth Shait3,Kaleem Mohammed3,Khan Mohammad Imran34,Sechi Mario5,Sanna Vanna6,Zughaibi Torki A.17,Abuzenadah Adel M.17,Tabrez Shams17

Affiliation:

1. Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University , Jeddah , Saudi Arabia

2. 3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University , Jeddah , Saudi Arabia

3. Department of Biochemistry , Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia

4. Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University , Jeddah , Saudi Arabia

5. Department of Medical, Surgical and Experimental Sciences, Laboratory of Drug Design and Nanomedicine, University of Sassari , 07100 Sassari , Italy

6. Nanomater s.r.l. , 07041 Alghero , Italy

7. King Fahd Medical Research Center, King Abdulaziz University , Jeddah , Saudi Arabia

Abstract

Abstract In continuation of our previous studies, we developed polymeric epigallocatechin 3-gallate (EGCG)-loaded nanoparticles (NPs) coupled with folic acid (FA), able to dually bind the human folate receptor alpha (FOLR1), and prostate-specific membrane antigen (PSMA+) in prostate cancer (PCa) model. After a preliminary computational molecular recognition of NP′ ligand binding on the FOLR1 active site, we synthesized the biocompatible block-copolymer PLGA–PEG–FA to prepare EGCG-targeted NPs (EGCG-T-NPs). The obtained NPs were characterized by various analytical techniques, and anticancer efficacy was determined by different sets of experiments in a 3D culture of PCa using PC3 and 22Rv1 cell lines. Results showed a significant reduction in spheroid size by EGCG-T-NPs, especially in PSMA+ (22Rv1) cells. The targeted NPs significantly enhanced the antiproliferative activity of EGCG against PCa cell lines, especially toward the PSMA+ cells, known to have higher FOLR1 expression. We did not observe any changes in the reactive oxygen species formation in both studied cell lines. However, significant changes in mitochondrial depolarization (15%) and polarization (18%) were recorded in response to EGCG-T-NP compared to control in 22Rv1. Similarly, EGCG-T-NP treatment also showed an increase in the number of dead apoptotic cells in 22Rv1 spheroids. Collectively, the obtained results support our hypothesis about the role of these targeted nanoprototypes in the increasing cellular uptake of EGCG payload into PCa cells, thus enhancing its antitumor efficacy.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3