Antibacterial and biofilm prevention metabolites from Acanthophora spicifera

Author:

Budiyanto Fitri1,Albalawi Nawal A.2,Ghandourah Mohamed A.1,Sobahi Tariq R.2,Aly Magda M.3,Althagbi Hanan F.4,Abuzahrah Samah S.5,Alarif Walied M.1

Affiliation:

1. Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University , 21589 Jeddah , Saudi Arabia

2. Department of Chemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589 , Saudi Arabia

3. Department of Biology, Faculty of Science, King Abdulaziz University , Jeddah 21589 , Saudi Arabia

4. Department of Chemistry, College of Science, University of Jeddah , Jeddah 21959 , Saudi Arabia

5. Department of Biological Sciences, College of Science, University of Jeddah , Jeddah 21959 , Saudi Arabia

Abstract

Abstract Acanthophora spicifera harbors a diverse array of secondary metabolites with therapeutic potential. The aim of this study is to isolate and characterize secondary metabolites from A. spicifera and then evaluate the antiproliferation, antibacterial, and biofilm prevention properties, followed by an analysis of molecular docking experiments. By employing chromatographic analysis and NMR spectroscopy, the isolated compounds were, the known flavonol, 8-hydroxyquercetagetin (1), three recognized steroids cholest-4-ene-3,6-dione (2), cholest-5-en-3β-ol (3), and 5α-cholestane-3,6-dione (4), and 2-bromohexadecanoic acid (5). These compounds exhibited antimicrobial effects against various Gram-negative and Gram-positive bacteria with inhibition zones ranging from 6.5 ± 0.2 to 17.2 ± 0.12 mm and 7.0 ± 0.4 to 15.3 ± 0.60 mm, respectively. Compounds 1 and 2 inhibited biofilm formation in P. aeruginosa and S. aureus. Compounds 14 demonstrated binding affinity values between −7.5 and −9.4 kcal/mol to protein 1A0G. These binding affinity values were akin to that of amoxicillin, implying that one potential antibacterial mechanism of action of these compounds may involve the inhibition of bacterial cell wall synthesis. All compounds showed no toxicity against Artemia salina and weak activity against Lymphoma and Lewis lung carcinoma cell lines with LD50 > 100 μg/mL.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3