Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system

Author:

Altgen Michael,Militz Holger

Abstract

Abstract European beech (Fagus sylvatica L.) was thermally modified in a closed reactor system under various process conditions. Sorption cycles, dynamic vapor sorption (DVS) measurements, and a three-point bending test were performed on thermally modified wood (TMW) to assess hygroscopicity and mechanical properties. As a function of mass loss (ML), the initial equilibrium moisture content (EMC) measured at 20°C/65% relative humidity (RH) directly after the process was strongly influenced by the RH during the process. This effect is explained by realignments of amorphous polymers in the cell wall ultra-structure in the course of thermal modification (TM). However, the EMC of TMW gradually increased after sorption cycles consisting of conditioning over liquid water and water-soaking. This increase was most distinct for TMW modified at low RH, which is an indication for reversible ultra-structural realignments. Results of the bending test suggest that structural realignments also hindered the plastic flow of amorphous cell wall polymers, thereby reducing inelastic toughness and inelastic deflection, while other bending properties were solely affected by ML alone. Process conditions in a closed reactor systems have a profound impact on resulting wood properties, and thus, the partial reversibility of these property changes need to be considered during the application.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference84 articles.

1. Reflections on the ultrastructure of softwood fibers;Cell. Chem. Technol.,2006

2. Hygroscopicity of heat-treated Norway spruce (Picea abies) wood;Eur. J. Wood Wood. Prod.,2010

3. Effect of initial moisture content on the anti-swelling efficiency of thermally modified Scots pine sapwood treated in a high-pressure reactor under saturated steam;Holzforschung,2014

4. Modeling strength loss in wood by chemical composition. Part I: An individual component model for Southern pine;Wood Fiber Sci.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3