A novel long noncoding RNA AC125257.1 facilitates colorectal cancer progression by targeting miR-133a-3p/CASC5 axis

Author:

Liao Chuanwen1,Zheng Zihan1,Liu Junye1,Li Jian1,Li Rui1,Hu Shuqin2

Affiliation:

1. Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College) , Nanchang , Jiangxi, 330006 , China

2. Department of Organ Procurement Organization, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College) , No. 152 Aiguo Road , Nanchang , Jiangxi, 330006 , China

Abstract

Abstract Colorectal cancer (CRC) is a common malignant gastrointestinal tumor. Long noncoding RNAs (lncRNAs) are revealed to be critically involved in CRC progression, providing new direction for exploring the pathogenesis of CRC. This study aimed to explore the biological functions and regulatory mechanisms of lncRNA AC125257.1 in CRC. Western blotting and reverse-transcription quantitative polymerase chain reaction were used for the measurement of gene expression. Cell counting kit-8 assay and flow cytometry analysis were used to explore the effects of AC125257.1 on CRC cell viability and apoptosis. RNA pull-down and immunoprecipitation assays were performed for validating the binding between AC125257.1 and its potential downstream microRNA. Results showed that lncRNA AC125257.1 expression was upregulated in CRC cells and tumor tissues. AC125257.1 enhanced cell viability and suppressed apoptosis of CRC cells. Moreover, the knockdown of AC125257.1 suppressed CRC progression in vitro and inhibited tumor growth in vivo. miR-133a-3p was revealed to bind with AC125257.1 in CRC cells. CASC5 was proved to be targeted by miR-133a-3p. Moreover, rescue assays indicated that the knockdown of AC125257.1 suppressed the pathogenic overexpression of CASC5. To conclude, AC125257.1 aggravates CRC development via miR-873-5p/CASC5 axis. Our findings might suggest a novel perspective that AC125257.1 may become the target for CRC treatment.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3