Tanshinone IIA attenuates valvular interstitial cells’ calcification induced by oxidized low density lipoprotein via reducing endoplasmic reticulum stress

Author:

Chen Fang1,Yang Dongqiang2,Ru Yuhua3,Bai Yu1,Pei Xueliang4,Sun Jie1,Cao Shan1,Wang Weiguang1,Gao Aishe1

Affiliation:

1. Department of Pathophysiology, Henan University of Traditional Chinese Medicine , Zhengzhou 450008 , China

2. Department of Infectious Diseases, Henan Provincial Peoples’ Hospital , Zhengzhou 450003 , China

3. Department of Medical Academy, Soochow University , Soochow 215021 , China

4. Department of Cardiovascular Surgery, Henan Provincial Peoples’ Hospital , Zhengzhou 450003 , China

Abstract

Abstract Recent studies revealed that endoplasmic reticulum (ER) stress played an emerging role of in valve calcification. Tanshinone IIA (TanIIA) has been a research hotspot in cardiovascular diseases. Previously we found that sodium TanIIA dampened the pathological phenotype transition of valvular interstitial cells (VICs) by affecting ER stress published in Chinese Journal. Here, we test the hypothesis that TanIIA attenuates the pro-osteogenic effects of oxidized low-density lipoprotein (oxLDL) in VICs by reducing induction of ER stress. Patients’ aortic valve (AV) was collected, and porcine VICs were cultured for in vitro model. ER stress markers were tested in human leaflets by immunostaining. Immunoblotting were used to test the osteoblastic factors such as Runx2, osteocalcin, and ER stress markers GRP78, CHOP, XBP1, etc. Alkakine phosphate (ALP) activity assay were used to test the activity of ALP kinase. Pro-inflammatory gene expression was detected by polymerase chain reaction. As a result, ER stress markers were elevated in patients’ calcified AVs. OxLDL induced osteogenesis and inflammation via promoting ER stress. TanIIA attenuated oxLDL induced ER stress. TanIIA also inhibited theosteoblastic factors and inflammatory cytokine expressions in VICs. In conclusion, our data provide evidence that TanIIA exerts anti-inflammation and anti-osteogenic effects in VICs by attenuating ER stress, and ER stress acts as an important regulator in oxLDL induced VICs’ phenotype transition.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3