Effects of dry heating, acetylation, and acid pre-treatments on modification of potato starch with octenyl succinic anhydride (OSA)

Author:

Lim Xiao Xian1,Zulkurnain Musfirah1,Yussof Nor Shariffa1,Utra Uthumporn1

Affiliation:

1. Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia , Penang , Malaysia

Abstract

Abstract Octenyl succinic anhydride (OSA) starch is widely used to stabilize emulsions. Nevertheless, the poor compatibility of starch with hydrophobic groups has restricted the performance of OSA modification. In this work, potato starch was pre-treated once or twice (dry heating, acetylation, and acid modification) prior to OSA modification. Pre-treatments increased the degree of substitution (DS), hydrophobicity, hydrophilicity, and decreased amylose content of OSA starches, with dual pre-treatments having greater effects. Among all pre-treatments, acid modification followed by dry heating resulted in the greatest OSA modification (DS: 0.015) and water-binding capacity (155%). Meanwhile, acid modification followed by acetylation produced OSA starch with the highest oil-binding capacity (290%). Scanning electron microscopy revealed that the granular deformation of dual pre-treated OSA starches was greater compared to single pre-treated and non-pre-treated OSA starches (O). Dual pre-treated OSA starches (ADO, 7%; ACO, 8%) had lower amylose contents than those of single pre-treated (AO: 12%, CO: 17%, DO: 21%) and O (36%). All the pre-treatments reduced the setback viscosity of OSA starch to a lower range (70–394 cP), simultaneously decreasing their retrograde tendency. This study suggested that dual pre-treatments could improve the efficiency of OSA modification and produce OSA starch with greater emulsifying potential.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3