Magnetoacoustic waves in spin-1/2 dense quantum degenerate plasma: nonlinear dynamics and dissipative effects

Author:

Abd-Elzaher Mohamed1,Nisar Kottakkaran S.2,Abdel-Aty Abdel-Haleem3,Karmakar Pralay K.4,Atteya Ahmed5

Affiliation:

1. Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport , El-Alamein , Egypt

2. Department of Mathematics, College of Science and Humanities in Alkharj , Prince Sattam Bin Abdulaziz University , Alkharj 11942 , Saudi Arabia

3. Department of Physics, College of Sciences , 488770 University of Bisha , Bisha 61922 , Saudi Arabia

4. Department of Physics , Tezpur University , Napaam , Tezpur 784 028 , India

5. Department of Physics, Faculty of Science , Alexandria University , Alexandria , P.O. 21511 , Egypt

Abstract

Abstract Within the confines of a two-fluid quantum magnetohydrodynamic model, the investigation of magnetoacoustic shock and solitary waves is conducted in an electron-ion magnetoplasma that considers electrons of spin 1/2. When the plasma system is nonlinearly investigated using the reductive perturbation approach, the Korteweg de Vries-Burgers (KdVB) equation is produced. Sagdeev’s potential is created, revealing the presence of solitary solutions. However, when dissipative terms are included, intriguing physical solutions can be obtained. The KdVB equation is further investigated using the phase plane theory of a planar dynamical system to demonstrate the existence of periodic and solitary wave solutions. Predicting several classes of traveling wave solutions is advantageous due to various phase orbits, which manifest as soliton-shock waves, and oscillatory shock waves. The presence of a magnetic field, the density of electrons and ions, and the kinematic viscosity significantly alter the properties of magnetoacoustic solitary and shock waves. Additionally, electric fields have been identified. The outcomes obtained here can be applied to studying the nature of magnetoacoustic waves that are observed in compact astrophysical environments, where the influence of quantum spin phenomena remains significant, and also in controlled laboratory plasma experiments.

Funder

Prince Sattam bin Abdulaziz University

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3