Treatment-resistant schizophrenia: focus on the transsulfuration pathway

Author:

Berry Thomas1,Abohamza Eid2,Moustafa Ahmed A.13

Affiliation:

1. School of Social Sciences and Psychology , Western Sydney University , Sydney 2751 , New South Wales , Australia

2. Department of Social Sciences , College of Arts and Sciences, Qatar University , P.O. Box 2713 , Doha , Qatar

3. Marcs Institute for Brain and Behaviour , Western Sydney University , Sydney 2751 , New South Wales , Australia

Abstract

Abstract Treatment-resistant schizophrenia (TRS) is a severe form of schizophrenia. The severity of illness is positively related to homocysteine levels, with high homocysteine levels due to the low activity of the transsulfuration pathway, which metabolizes homocysteine in synthesizing L-cysteine. Glutathione levels are low in schizophrenia, which indicates shortages of L-cysteine and low activity of the transsulfuration pathway. Hydrogen sulfide (H2S) levels are low in schizophrenia. H2S is synthesized by cystathionine β-synthase and cystathionine γ-lyase, which are the two enzymes in the transsulfuration pathway. Iron-sulfur proteins obtain sulfur from L-cysteine. The oxidative phosphorylation (OXPHOS) pathway has various iron-sulfur proteins. With low levels of L-cysteine, iron-sulfur cluster formation will be dysregulated leading to deficits in OXPHOS in schizophrenia. Molybdenum cofactor (MoCo) synthesis requires sulfur, which is obtained from L-cysteine. With low levels of MoCo synthesis, molybdenum-dependent sulfite oxidase (SUOX) will not be synthesized at appropriate levels. SUOX detoxifies sulfite from sulfur-containing amino acids. If sulfites are not detoxified, there can be sulfite toxicity. The transsulfuration pathway metabolizes selenomethionine, whereby selenium from selenomethionine can be used for selenoprotein synthesis. The low activity of the transsulfuration pathway decreases selenoprotein synthesis. Glutathione peroxidase (GPX), with various GPXs being selenoprotein, is low in schizophrenia. The dysregulations of selenoproteins would lead to oxidant stress, which would increase the methylation of genes and histones leading to epigenetic changes in TRS. An add-on treatment to mainline antipsychotics is proposed for TRS that targets the dysregulations of the transsulfuration pathway and the dysregulations of other pathways stemming from the transsulfuration pathway being dysregulated.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3