Imaging and spatial omics of kidney injury: significance, challenges, advances and perspectives

Author:

Li Zehua123ORCID,Lu Yao123,Yang Li123ORCID

Affiliation:

1. Renal Division , Peking University Institute of Nephrology, Peking University First Hospital , Beijing , China

2. Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital , Beijing , China

3. Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital , Beijing , China

Abstract

Abstract The kidneys are susceptible to a range of insults that can cause damage to them. Early diagnosis, timely prevention, and proper treatment are crucial for improving the outcome of kidney injury. However, the complexity of renal structure and function makes it difficult to reach the demand of early detection and comprehensive evaluation of kidney injury. No successful drug therapy caused by the elaborate pathogenesis mechanism network of kidney injury calls for a systematical interpretation in mechanism researches. Recent advances in renal imaging and omics studies have provided novel views and deeper insights into kidney injury, but also raise challenges in reaching a comprehensive cellular and molecular atlas of kidney injury. Progresses in imaging and omics of kidney injury are being made in various directions, with the initiative of construction a high-resolution structural atlas of kidney, dynamic and non-invasive evaluation of renal function, and systematic establishment of spatially resolved molecular atlas by transcriptomics and metabolomics. With the limitations of a single modality, novel multimodal integration technologies of imaging and omics are being attempted to achieve a systematic description of nephropathy mechanisms. Further extensive efforts in renal multimodal imaging and omics studies are extremely required to deepen our understanding on kidney injury in the context of diagnostic, mechanistic and therapeutic perspectives.

Funder

Beijing Young Scientist Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3