IL-37 affects the occurrence and development of endometriosis by regulating the biological behavior of endometrial stromal cells through multiple signaling pathways

Author:

Jiang Jianfa1,Yu Kenan1,Jiang Zhaoying1,Xue Min1

Affiliation:

1. Department of Obstetrics and Gynecology , The Third Xiangya Hospital of Central South University, No. 138 tongzipo , Yuelu District, Changsha 100730, Hunan , China

Abstract

Abstract Endometriosis (EMs) is a chronic inflammatory condition. Interleukin (IL)-37 is a member of the IL-1 family and an anti-inflammatory cytokine. This study aimed to evaluate the possible role of IL-37 in the EMs pathogenesis. We investigated the in vivo effect of IL-37 on EMs by injection with recombinant human IL-37 (rhIL-37) into EMs mice. Furthermore, we evaluated the in vitro effects of IL-37 on proliferation, adhesion, migration and invasiveness of endometrial stromal cells (ESCs), and explored whether Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways were involved in this process. In cultured ESCs, IL-37 overexpression significantly suppressed both protein and mRNA expression of the inflammation-associated cytokines, including IL-1β, IL-6, IL-10 and tumor necrosis factor (TNF-α). Furthermore, IL-37 overexpression significantly inhibited ESCs proliferation, adhesion, migration, invasion and the activity of matrix metalloproteinase (MMP)-2 and MMP-9. In contrast, knockdown of IL-37 exerted the opposite effects. Importantly, the IL-37-mediated action in ESCs was through inactivation of Wnt/β-catenin, p38 MAPK, extracellular signal-related kinases MAPK and c-Jun N-terminal kinase MAPK pathways. Moreover, EMs mice treated with rhIL-37 showed the decreased endometriotic-like lesion size and lesion weight, lower expression of IL-1β, IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-I (ICAM-I) and MMP-2/9 activity in peritoneal fluid compared with the wide type (WT) EMs mice. These findings suggest that IL-37 suppresses cell proliferation, adhesion, migration and invasion of human ESCs through multiple signaling pathways, thereby affecting the occurrence and development of EMs.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3