TET3 governs malignant behaviors and unfavorable prognosis of esophageal squamous cell carcinoma by activating the PI3K/AKT/GSK3β/β-catenin pathway

Author:

Zhu Maoling1,Shi Bowen2,Li Chunguang3,Xu Shuchang4

Affiliation:

1. Department of Gastroenterology, Yangpu Hospital, School of Medicine, Tongji University , Shanghai 200090 , P.R. China

2. Department of Thoracic Surgery, Changhai Hospital, Navy Military Medical University , Shanghai 200438 , China

3. Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai 200030 , China

4. Department of Gastroenterology, Tongji Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University , Shanghai 200065 , P.R. China

Abstract

Abstract Ten–eleven translocation 3 (TET3) participates in tumorigenesis and malignant transformation by mediating DNA demethylation and specific gene activation in malignances. This study aims to elucidate its molecular function and regulatory mechanism in esophageal squamous cell carcinoma (ESCC). Stable ESCC cells that infected with TET3 overexpression (OE) and knockdown lentiviral vector had been established. The biological behaviors and molecular mechanism of TET3 were demonstrated by cell biology experiments in vitro and in vivo. Tissues from patients with ESCC were used to demonstrate the clinical value of TET3. Our findings revealed that TET3 is highly expressed in ESCC tissues and related to poor prognosis of patients with ESCC. OE of TET3 presented a significant effect on proliferation, metastatic potential, and spheroid formation of ESCC cells by activating the PI3K/AKT/GSK3β/β-catenin axis. Knockdown of TET3 could remarkably reverse these malignant phenotypes. Patients with ESCC with high TET3 expression resulted in a shorter overall survival (OS) and disease-free survival. Based on the multivariate analysis, TET3 could be an independent favorable factor for predicting OS and recurrence. The high expression of TET3 not only aggravates malignant behaviors in vitro and in vivo but also becomes a novel biomarker for clinical monitoring and individualized precision treatment for patients with ESCC.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3