PVT1/miR-16/CCND1 axis regulates gastric cancer progression

Author:

Lv Haidong1,Zhou Dixia1,Liu Guoqing2

Affiliation:

1. Department of Tumor Surgery, Qinghai People’s Hospital , Xining 810007, Qinghai , China

2. Department of Tumor Surgery, Qinghai People’s Hospital , Republic Road No. 2 , Xining 810007, Qinghai , China

Abstract

Abstract Long non-coding RNA plasmacytoma variant translocation 1 (PVT1) has been reported to be a vital modulator in tumorigenesis of gastric cancer (GC). However, the detailed regulatory mechanism of PVT1 in GC remains largely unclear. In this work, the expressions of PVT1 and microRNA-16 (miR-16) were detected by quantitative real-time PCR (qRT-PCR) in GC tissues and cell lines. GC cell lines NCI-N87 and MKN45 cell lines were chosen for the following assays. After PVT1 was overexpressed or depleted, CCK-8 and Transwell assays were performed to examine the cell viability and invasive capacity. Cell cycle was analyzed by flow cytometry. The expression of cyclin D1 (CCND1) at mRNA and protein levels was measured by qRT-PCR and western blot. The competitive endogenous RNA molecular mechanism among PVT1, miR-16 and CCND1 was verified by bioinformatics analysis, luciferase-reporter gene assay and RNA immunoprecipitation assay. In the present study, it was revealed that PVT1 expression was remarkably evaluated in GC tissues and cell lines than that in the corresponding control group. PVT1 positively regulated the proliferation, migration and cell cycle progression of GC cells. Besides, miR-16 was identified as a target of PVT1, and CCND1 was identified as a target of miR-16. The depletion of PVT1 promoted the expression of miR-16 and suppressed CCND1 expression. Moreover, either miR-16 inhibitor or CCND1 overexpression plasmid could reverse the promoting effects of PVT1 on the malignant biological behaviors of GC cells. In conclusion, PVT1 promoted CCND1 expression by negatively regulating miR-16 expression to enhance the viability, invasion and cell cycle progression of GC cells.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3