Application of three-phase partitioning to the purification and characterization of polyphenol oxidase from antioxidant rosemary (Rosmarinus officinalis L.)

Author:

Yuzugullu Karakus Yonca1,Kahveci Busra2,Acemi Arda1,Kocak Gulden3

Affiliation:

1. Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41001, İzmit, Kocaeli, Turkey

2. Department of Biology, Institute of Natural and Applied Sciences, Kocaeli University, 41001, İzmit, Kocaeli, Turkey

3. Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingöl University, 12000, Bingöl, Turkey

Abstract

AbstractPolyphenol oxidase (PPO) has been purified from the rosemary plant (Rosmarinus officinalis L.) through three-phase partitioning (TPP) and has been biochemically characterized. The optimized TPP consisted of 50% (w/v) ammonium sulfate and equal volumes of crude extract and tert-butanol prepared at pH 6.5 and room temperature. Using this system, PPO was purified 14-fold, with 230% recovery of activity from the middle phase. The partitioned enzyme had a molecular mass of 53 kDa. The highest enzyme activity was detected at 30 °C and pH 7.0 against catechol. In substrate specificity tests, the enzyme displayed activity towards catechol, 4-methylcatechol, caffeic acid, hydroquinone, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), pyrogallol, syringaldezine, and 3,4-dihydroxy-L-phenylalanine but no activity towards L-tyrosine. The enzyme was inhibited by the common PPO inhibitors; salicylhydroxamic acid (SHAM), cetyltrimethylammonium bromide (CTAB), polyvinylpyrrolidone (PVP), and the organic solvent dimethyl sulfoxide (DMSO). Enzyme activity increased in the presence of the organic solvents acetone, ethanol, and methanol.

Funder

Kocaeli Üniversitesi

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3