Modification of methacrylate bone cement with eugenol – A new material with antibacterial properties

Author:

Przesławski Grzegorz1,Szcześniak Katarzyna12,Grześkowiak Bartosz2,Mazzaglia Antonino3,Jarzębski Maciej4,Niewczas Agata5,Kuczyński Paweł6,Zarębska-Mróz Aneta6,Marcinkowska Agnieszka1

Affiliation:

1. Faculty of Chemical Technology, Poznan University of Technology , Berdychowo 4 , Poznan , Poland

2. NanoBioMedical Center, Adam Mickiewicz University , Wszechnicy Piastowskiej 3 , Poznan , Poland

3. CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina , V.le F.Stagno d’Alcontres 31 , Messina , Italy

4. Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42 , Poznan , Poland

5. Department of Conservative Dentistry with Endodontic , Chodźki 6 , Lublin , Poland

6. Rehabilitation and Orthopedics Clinic, Faculty of Health Sciences, Medical University of Lublin , Janczewskiego 8 , Lublin , Poland

Abstract

Abstract Nowadays, the search for unconventional antibacterial agents is very common. One of them may be eugenol (EU) (4-allyl-2-methoxyphenol), which exhibits antimicrobial properties against pathogenic bacteria and is used in the pharmaceutical industry. Owing to its structure, EU decreases the exotherm of polymerization without a negative impact on the degree of conversion. The properties of EU-modified bone cement, such as doughing time, maximum temperature, and setting time, will be characterized, as well as mechanical properties, EU release, and antibacterial properties. Bone cements were synthesized by mixing a powder phase composed of two commercially available methacrylate copolymers (Evonic) and a liquid phase containing 2-hydroxyethyl methacrylate, methyl methacrylate, triethylene glycol dimethacrylate, and EU with an amount of 0.5 wt% of bone cement sample. As an initiating system, benzoyl peroxide and N,N-dimethylaniline were used. Samples were prepared with various amounts of the initiating system. The doughing time, maximum temperature (T max), setting temperature (T set), setting time (t set), and compressive strength tests were determined according to the ISO 5833:2002 standard requirements. The doughing time for bone cement depends on the amount of the initiating system. The maximum temperature during curing of bone cement is very low; however, the setting time is closer to the upper limit set by the standard. The compressive strength of the tested materials is good and significantly exceeds the requirements of the standard. EU release was very high and ranged from around 43–62% after 168 h. Moreover, antibacterial studies show that the tested bone cements are bacteriostatic for Staphylococcus aureus or and Escherichia coil strains. In summary, modified bone cements meet the ISO 5833:2002 standard requirements in all parameters and are characterized by good mechanical properties (similar to or higher than commercial bone cement), high EU release, and bacteriostatic properties.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3