Gaptronics: multilevel photonics applications spanning zero-nanometer limits

Author:

Jeong Jeeyoon1,Kim Hyun Woo2,Kim Dai-Sik345ORCID

Affiliation:

1. Department of Physics and Institute of Quantum Convergence Technology , Kangwon National University , Chuncheon , Gangwon 24341 , Korea

2. Laboratory for Advanced Molecular Probing (LAMP) , Korea Research Institute of Chemical Technology , Daejeon 34114 , Korea

3. Department of Physics and Astronomy , Seoul National University , Seoul 08826 , Korea

4. Department of Physics and Center for Atom Scale Electromagnetism , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Korea

5. Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Korea

Abstract

Abstract With recent advances in nanofabrication technology, various metallic gap structures with gap widths reaching a few to sub-nanometer, and even ‘zero-nanometer’, have been realized. At such regime, metallic gaps not only exhibit strong electromagnetic field confinement and enhancement, but also incorporate various quantum phenomena in a macroscopic scale, finding applications in ultrasensitive detection using nanosystems, enhancement of light–matter interactions in low-dimensional materials, and ultralow-power manipulation of electromagnetic waves, etc. Therefore, moving beyond nanometer to ‘zero-nanometer’ can greatly diversify applications of metallic gaps and may open the field of dynamic ‘gaptronics.’ In this paper, an overview is given on wafer-scale metallic gap structures down to zero-nanometer gap width limit. Theoretical description of metallic gaps from sub-10 to zero-nanometer limit, various wafer-scale fabrication methods and their applications are presented. With such versatility and broadband applicability spanning visible to terahertz and even microwaves, the field of ‘gaptronics’ can be a central building block for photochemistry, quantum optical devices, and 5/6G communications.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3