Realization of ultrastrong coupling between LSPR and Fabry–Pérot mode via self-assembly of Au-NPs on p-NiO/Au film

Author:

Garcia Alexis Angelo R.1,Mao Cheng-An1,Cheng Wen-Hui (Sophia)12ORCID

Affiliation:

1. Department of Materials Science and Engineering , National Cheng Kung University , Tainan , Taiwan

2. Hierarchical Green-Energy Materials (Hi-GEM) Research Center , National Cheng Kung University , Tainan , Taiwan

Abstract

Abstract The realization of higher coupling strengths between coupled resonant modes enables exploration of compelling phenomena in diverse fields of physics and chemistry. In this study, we focus on the modal coupling between localized surface plasmon resonance (LSPR) of Au nanoparticles (Au-NPs) and Fabry–Pérot mode (p-NiO/Au film). The effects of nanoparticle size, projected surface coverage (PSC), interparticle distance (IPD), and arrangement to the coupling strength between the two modes are theoretically investigated using finite-difference time-domain (FDTD) method. Au-NPs/p-NiO/Au film (ANA) nanostructures with NPs size of 10 nm, 30 nm, and 50 nm are considered. Numerical calculations point to larger size and higher projected surface coverage (also smaller IPD) of NPs as pre-eminent factors in enhancing the strength of modal coupling. ANA nanostructure with NPs size of 30 nm (ANA-30) and 50 nm (ANA-50) are experimentally fabricated via a facile air–liquid interface self-assembly. The fabricated nanodevices exhibit immense Rabi splitting energies of 655 meV (ANA-30) and 770 meV (ANA-50), and thus fulfill the ultrastrong coupling condition with remarkable splitting energy to bare (plasmon) energy ratio of 0.35 (ANA-30) and 0.4 (ANA-50). The physical insights presented in this study, together with the simple and scalable fabrication process, establish a viable approach to realize stronger coupling between LSPR and Fabry–Pérot mode in metal NPs/dielectric/metal film systems. This will be vital to take advantage of the promising performance enhancements of plasmonic-based nanostructures under strongly coupled regimes in areas such as solar to fuel conversion, sensing, opto-electronics, and quantum applications.

Funder

National Science and Technology Council, Taiwan

Ministry of Education (MOE), Taiwan

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3