Direct growth of monolayer MoS2 on nanostructured silicon waveguides

Author:

Kuppadakkath Athira1ORCID,Najafidehaghani Emad2,Gan Ziyang2,Tuniz Alessandro3,Ngo Gia Quyet1,Knopf Heiko13,Löchner Franz J. F.1,Abtahi Fatemeh1,Bucher Tobias14,Shradha Sai1,Käsebier Thomas1,Palomba Stefano3,Felde Nadja5,Paul Pallabi15,Ullsperger Tobias1,Schröder Sven5,Szeghalmi Adriana15ORCID,Pertsch Thomas155,Staude Isabelle154,Zeitner Uwe5,George Antony2,Turchanin Andrey2,Eilenberger Falk155

Affiliation:

1. Friedrich Schiller University, Institute of Applied Physics, Abbe Center of Photonics , Albert-Einstein-Str. 15, 07745 Jena , Germany

2. Friedrich Schiller University, Institute of Physical Chemistry , Jena , Germany

3. Fraunhofer-Institute for Applied Optics and Precision Engineering IOF , Albert-Einstein-Str. 7, 07745 Jena , Germany

4. Friedrich Schiller University Jena, Institute of Solid State Physics , Max-Wien-Platz 1, 07743 Jena , Germany

5. Max Planck School of Photonics , Hans-Knöll-Straße 1, 07745 Jena , Germany

Abstract

Abstract We report for the first time the direct growth of molybdenum disulfide (MoS2) monolayers on nanostructured silicon-on-insulator waveguides. Our results indicate the possibility of utilizing the Chemical Vapour Deposition (CVD) on nanostructured photonic devices in a scalable process. Direct growth of 2D material on nanostructures rectifies many drawbacks of the transfer-based approaches. We show that the van der Waals material grow conformally across the curves, edges, and the silicon–SiO2 interface of the waveguide structure. Here, the waveguide structure used as a growth substrate is complex not just in terms of its geometry but also due to the two materials (Si and SiO2) involved. A transfer-free method like this yields a novel approach for functionalizing nanostructured, integrated optical architectures with an optically active direct semiconductor.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3