Three-dimensional surface lattice plasmon resonance effect from plasmonic inclined nanostructures via one-step stencil lithography

Author:

Jeong Tae-In1,Kim Sehyeon1,Kim San1,Shin Minchan1,Gliserin Alexander12,Kang Tae Young1,Kim Kyujung12ORCID,Kim Seungchul12ORCID

Affiliation:

1. Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology , Pusan National University , Busan 46241 , Republic of Korea

2. Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology , Pusan National University , Busan 46241 , Republic of Korea

Abstract

Abstract Plasmonic nanostructures allow the manipulation and confinement of optical fields on the sub-wavelength scale. The local field enhancement and environmentally sensitive resonance characteristics provided by these nanostructures are of high importance for biological and chemical sensing. Recently, surface lattice plasmon resonance (SLR) research has attracted much interest because of its superior quality factor (Q-factor) compared to that of localized surface plasmon resonances (LSPR), which is facilitated by resonant plasmonic mode coupling between individual nanostructures over a large area. This advantage can be further enhanced by utilizing asymmetric 3D structures rather than low-height (typically height < ∼60 nm) structure arrays, which results in stronger coupling due to an increased mode volume. However, fabricating 3D, high-aspect ratio, symmetry-breaking structures is a complex and challenging process even with state-of-the-art fabrication technology. Here, we report a plasmonic metasurface of 3D inclined structures produced via commercial TEM grid–based stencil lithography with a Q-factor of 101.6, a refractive index sensitivity of 291 nm/RIU, and a figure of merit (FOM) of 44.7 in the visible wavelength range at a refractive index of 1.5 by utilizing the 3D SLR enhancement effect, which exceeds the performance of most LSPR systems (Q < ∼10). The symmetry-breaking 3D inclined structures that are fabricated by electron beam evaporation at an angle increase the polarizability of the metasurface and the directionality of the diffractively scattered radiative field responsible for SLR mode coupling. Additionally, we explore the role of spatial coherence in facilitating the SLR effect and thus a high-Q plasmonic response from the nanostructures. Our work demonstrates the feasibility of producing 3D inclined structure arrays with pronounced SLR enhancement for high biological sensitivity by utilizing the previously unexplored inclined stencil lithography, which opens the way to fabricate highly sensitive plasmonic metasurfaces with this novel simple technique.

Funder

Korea Evaluation Institute of Industrial Technology

Pusan National University

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3