Gigantic blue shift of two-photon–induced photoluminescence of interpenetrated metal–organic framework (MOF)

Author:

Chen Zhihui1ORCID,Xu Defeng1,Zhu Menglong2ORCID,Wang Yueting1,Feng Junfan1,Shu Chuancun1,Xiao Si1,Meng Jianqiao1,He Jun1

Affiliation:

1. Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics , Central South University , Changsha 410083 , China

2. Department of Applied Physics, School of Microelectronics and Physics , Hunan University of Technology and Business , Changsha 410205 , China

Abstract

Abstract As an important means of modern science and technology, multiphoton fluorescence plays an essential role in high-resolution imaging, photochemistry, micro- and nano-processing and clinical diagnosis. Multiphoton fluorescence usually shares the same radiative channel as its intrinsic fluorescence. Under multiphoton excitation, except for red shift fluorescence caused by the reabsorption effect, gigantic blue shift of multiphoton fluorescence is rarely reported. In this work, metal–organic frameworks (MOFs) with 7-fold and 8-fold interpenetration are successfully synthesized. The synthesized 8-fold interpenetrated MOFs show unexpectedly giant blue-shifted (∼40 nm) two-photon–induced fluorescence compared with its fluorescence emission. Specific optical selection rules lead to different final transition states in one-photon absorption and two-photon absorption. The density functional theory (DFT) and time-dependent density functional theory (TDDFT) simulations show that, under two-photon excitation, electrons and holes can be more delocalized, and intermolecular interactions mainly govern the emission process of 8-fold interpenetrated MOFs. Highly excited electronic states of the interpenetrated MOFs are effectively excited and emitted under two-photon excitation, thus generating the inevitable blue-shifted two-photon–induced fluorescence emission. Our work provides a guide for exploring the excitation mechanism of fluorescent MOFs and offers an access to a tunable all-optical single-crystal device.

Funder

the Fundamental Research Funds for the Central Universities of Central South University

National Natural Science Foundation of China

the Natural Science Foundation of Hunan Province, China

the Research Foundation of Education Bureau of Hunan Province, China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3