Direct electron beam patterning of electro-optically active PEDOT:PSS

Author:

Doshi Siddharth12ORCID,Ludescher Dominik3ORCID,Karst Julian3ORCID,Floess Moritz3ORCID,Carlström Johan2,Li Bohan2ORCID,Mintz Hemed Nofar1ORCID,Duh Yi-Shiou2,Melosh Nicholas A.1,Hentschel Mario3ORCID,Brongersma Mark2ORCID,Giessen Harald3ORCID

Affiliation:

1. Department of Materials Science and Engineering , Stanford University , Stanford , CA 94305 , USA

2. Geballe Laboratory for Advanced Materials , Stanford University , 476 Lomita Mall , Stanford , CA 94305 , USA

3. 4th Physics Institute and Research Center SCoPE , University of Stuttgart , Pfaffenwaldring 57, 70569 Stuttgart , Germany

Abstract

Abstract The optical and electronic tunability of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has enabled emerging applications as diverse as bioelectronics, flexible electronics, and micro- and nano-photonics. High-resolution spatial patterning of PEDOT:PSS opens up opportunities for novel active devices in a range of fields. However, typical lithographic processes require tedious indirect patterning and dry etch processes, while solution-processing methods such as ink-jet printing have limited spatial resolution. Here, we report a method for direct write nano-patterning of commercially available PEDOT:PSS through electron-beam induced solubility modulation. The written structures are water stable and maintain the conductivity as well as electrochemical and optical properties of PEDOT:PSS, highlighting the broad utility of our method. We demonstrate the potential of our strategy by preparing prototypical nano-wire structures with feature sizes down to 250 nm, an order of magnitude finer than previously reported direct write methods, opening the possibility of writing chip-scale microelectronic and optical devices. We finally use the high-resolution writing capabilities to fabricate electrically-switchable optical diffraction gratings. We show active switching in this archetypal system with >95 % contrast at CMOS-compatible voltages of +2 V and −3 V, offering a route towards highly-miniaturized dynamic optoelectronic devices.

Funder

Bundesministerium für Bildung und Forschung

European Research Council

Stanford Graduate Fellowship

Baden-Württemberg Stiftung

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Department of Energy Stanford

Deutsche Forschungsgemeinschaft

Universität Stuttgart

Airforce Office of Sponsored Research

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3