Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite

Author:

El-Nemr Khaled F.1,Ali Magdy A. M.1,Hassan Medhat M.1,Hamed Huda E.2

Affiliation:

1. National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City, Cairo 11731 , Egypt

2. Chemistry Department, Faculty of Science , Al-Azhar University , Nasr City, Cairo , Egypt

Abstract

Abstract Blends of rubber-rubber have desired properties intermediated between two rubber matrices. On the other hand, polymer-clay nanocomposites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeability that are achieved in many cases. Polymer-clay nanocomposites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. In this study, new nanocomposite materials were produced from the blend of polybutadiene rubber (BR) and ethylene propylene diene monomer rubber (EPDM), BR/EPDM (50/50) as matrix and organically modified vermiculite clay (VMT) by quaternary alkylammonium in different contents (3, 6, 9 and 12 phr) as the filler by using rubber mill then, the rubber nanocomposite sheets were irradiated at doses of 25, 50, 75, 100 and 150 kGy using γ-radiation technique as a crosslinking tool. The prepared composites can be characterized by using various analytical techniques including X-ray diffractometer (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) as well as mechanical properties measurements.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3