Advances in the improvement of photocatalytic activity of BiOCl nanomaterials under visible light

Author:

Hao Linjing123,Sang Haoran123,Hou Yuwei123,Li Peng4,Zhang Jie123,Yang Jing-He4

Affiliation:

1. School of Ecology and Environment , Zhengzhou University , Henan 450001 , P.R. China

2. International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P.R. China

3. Research Center of Heterogeneous Catalysis & Engineering Sciences , Zhengzhou University , Henan 450001 , P.R. China

4. School of Chemical Engineering , Zhengzhou University , Henan 450001 , P.R. China

Abstract

Abstract Photocatalysis is an effective way to alleviate the energy crisis and environmental pollution. Bismuth Chloride Oxide (BiOCl) is one of the most widely studied metal oxides due to its unique surface and electronic structure. However, the wide band gap of BiOCl and the high complexation rate of photogenerated electron–hole pairs limit its photocatalytic efficiency. Increasingly, efforts are being made to improve the performance of this range of photocatalysts. The article reviews the progress of research to enhance the photocatalytic activity of BiOCl nanomaterials. Strategies to improve the photocatalytic performance of single-phase BiOCl include morphological control, component adjustment, crystal facet control, and defects construction. Strategies to improve the photocatalytic activity of BiOCl-based composites include surface modification, immobilization of photocatalysts, impurity doping, and the construction of heterojunctions. In addition, the challenges and trends of BiOCl photocatalysts are discussed and summarized. Hopefully, this review will be helpful for the research and application of BiOCl photocatalysts.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3