Abstract
Research in renewable energy, the preservation of the environment, and the reduction of energy generation costs are themes that go hand in hand. In this work, a case study was carried out that aims to maximize the production of hydrogen through Methane Steam Reforming. For this, several numerical simulations, considering a laminar flow regime in a chemical reactor with a catalyst, were developed with COMSOL Multiphysics. After an exploratory study of the data, a systematic optimization was developed using multivariate regression models formed by combinations of input parameters in an idealized reactor. The results showed that the proposed approach is capable of satisfactory optimization.
Publisher
Engineering, Technology & Applied Science Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献