A Fault Diagnosis Technique for Wind Turbine Gearbox: An Approach using Optimized BLSTM Neural Network with Undercomplete Autoencoder

Author:

Sreenatha M.,Mallikarjuna P. B.

Abstract

The gearbox is one of the critical components of a wind turbine. Proactive maintenance of wind turbine gearboxes is crucial to decrease maintenance and operational costs and the long downtime of the complete system. As the gearbox is a significant part of the wind turbine, a fault in the gearbox leads to the breakdown of the wind turbine system. Hence, it is important to study and analyze the faults in wind turbine gearbox systems. In this article, a neural network-based model, a Bidirectional Long Short-Term Memory (BLSTM) fused with an autoencoder is intended to categorize the condition of the gearbox into good or bad (broken tooth) condition. Feature learning and reduction are achieved extensively through the autoencoder. This improves the performance of the BLSTM model regarding time complexity and classification accuracy. This model has been applied with time series vibration data of the gearbox in a wind turbine system. The suggested model's performance is analyzed using an openly available wind turbine gearbox vibration dataset. The result showed that BLSTM accuracy with an under-complete autoencoder is highly robust and appropriate for the health monitoring of wind turbine gearbox systems using time series data. Also, in order to illustrate the advantage of the projected model for fault analysis and diagnosis in wind turbine gearbox, the throughput or time complexity of training and testing of the split dataset is compared with the conventional BLSTM model.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated design and maintenance strategies for wind turbine gearboxes;Journal of Quality in Maintenance Engineering;2024-08-07

2. Application of the TOPSIS Method for Multi-Objective Optimization of a Two-Stage Helical Gearbox;Engineering, Technology & Applied Science Research;2024-08-02

3. Bibliography;Deep Learning;2024-07-05

4. Multi-Objective Optimization for Finding Main Design Factors of a Two-Stage Helical Gearbox with Second-Stage Double Gear Sets Using the EAMR Method;Symmetry;2024-06-21

5. Deep Autoencoder Model for Hypoid Gear Fault Diagnosis With Dynamic Torque and Rotation Speed;2024 IEEE 11th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE);2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3