Author:
Yau J.,Wei J. J.,Wang H.,Eniola O.,Ibitoye F. P.
Abstract
The global rise in food demand requires urgent attention in the aspect of crop production. The microclimate of a greenhouse is a critical issue in agricultural practice, due to the variations of the external climatic conditions and their negative effect on crop production. In this work, a dynamic model of the internal air temperature of a Chinese solar greenhouse was designed in Matlab/Simulink environment. The dynamic model was designed with the use of energy balance equations. The weather data consisting of solar radiation, relative humidity, ambient temperature, and Photosynthetically Active Radiation (PAR) were acquired from meteorological stations. The results of the simulations show that the temperature of the internal air varies with weather conditions, location, number of covers, and the structure of the solar greenhouse.
Publisher
Engineering, Technology & Applied Science Research
Reference20 articles.
1. [1] R. A. Aldrich and J. W. Bartok, Greenhouse Engineering (NRAES 33). Ithaca, N.Y: Northeast Regional Agricultural Engineering Service (NRAES), 1994.
2. [2] H. A. Ahemd, A. A. Al-Faraj, and A. M. Abdel-Ghany, "Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review," Scientia Horticulturae, vol. 201, pp. 36-45, Mar. 2016.
3. [3] B. Alain, "Greenhouse microclimate and its management in mild winter climates," presented at the International Symposium on Protected Cultivation of Ornamentals in Mild Winter Climates.
4. [4] A. Baille, "Trends in greenhouse technology for improved climate control in mild winter climates," Acta Horticulturae, no. 559, pp. 161-168, Oct. 2001.
5. [5] V. Castro, S. A. Isard, and M. E. Irwin, "The microclimate of maize and bean crops in tropical America: a comparison between monocultures and polycultures planted at high and low density," Agricultural and Forest Meteorology, vol. 57, no. 1, pp. 49-67, Dec. 1991.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献