A Case Study of Surface Roughness Improvement for C40 Carbon Steel and 201 Stainless Steel using Ultrasonic Assisted Vibration in Cutting Speed Direction

Author:

Nguyen Thanh Trung,Tuan Truong Cong,Vu Toan Thang

Abstract

The surface roughness of mechanical parts plays an important role in evaluating the machining performance. However, achieving fine surface finishes on small-diameter shafts through traditional lathes poses challenges due to low cutting speed and workpiece stiffness. To address this issue, in the present work, we applied ultrasonic-assisted vibration aligned with the cutting speed direction to enhance the turning process of small shafts made of C40 Carbon steel or 201 stainless steel. The workpieces were machined by Ultrasonic Assisted Turning (UAT) at three different cutting speeds, ranging from 15 to 36 m/min, while maintaining a constant feed rate and depth of cut. To facilitate comparison with conventional turning (CT), the cutting parameters remained consistent, and both methods were performed for the same duration. UAT necessitates the use of a specialized turning inserts’ fixture known as a horn to transmit ultrasonic vibrations from the generator to the tooltip. This study also presents the design methodology and the performance evaluation of the horn. Surface roughness was assessed using the arithmetical mean height, Ra. In UAT, the roughness Ra exhibited the most significant reduction for C40 Carbon steel, reaching a decrease of 308% at a cutting speed of 15 m/min, whereas for 201 stainless steel, Ra did not vary by more than 23% across different cutting speeds.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3