Author:
Naziry Kordkandy M.,Arash A.,Nazary Kordkandy M.
Abstract
This paper is analyzing the operation of a stand-alone wind farm with variable speed turbines, permanent magnet synchronous generators (PMSG) and a system for converting wind energy during wind speed variations. On this paper, the design and modeling of a wind system which uses PMSG’s to provide the required power of a hydrogen gas electrolyzer system, is discussed. This wind farm consists of three wind turbines, boost DC-DC converters, diode full bridge rectifiers, permanent magnet synchronous generators, MPPT control and a hydrogen gas electrolyzer system. The MPPT controller based on fuzzy logic is designed to adjust the duty ratio of the boost DC-DC converters to absorb maximum power. The proposed fuzzy logic controller assimilates, with (PSF) MPPT algorithm which generally used to absorb maximum power from paralleled wind turbines and stores it in form of hydrogen gas. The system is modeled and its behavior is studied using the MATLAB software.
Publisher
Engineering, Technology & Applied Science Research
Reference15 articles.
1. L. Barote, C. Marinescu, M. N. Cirstea. “Control structure for single-phase stand-alone wind-based energy sources”, IEEE Transactions on Industrial Electronics, Vol. 60, No. 2, pp. 764-72, 2013
2. H. Zhao, Q. Wu, C. N. Rasmussen, M. Blanke, “L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking” , IEEE Trans. Energy Convers., Vol. 29, No. 3, pp. 576-584, 2014
3. H. Kaneuchi, T. Yachi, T. Tani, “Effect of an EDLC in a wind turbine system for hydrogen production” , 29th IEEE International Conference on Telecommunications Energy (INTELEC), Rome, October, 2007
4. K. Koiwa, R. Takahashi, J. Tamura, “A study of hydrogen production in stand-alone wind farm”, 2012 International Conference on Renewable Energy Research and Applications (ICRERA), November 11-14, 2012
5. R. J. Mantz, H. De Battista, “Hydrogen production from idle generation capacity of wind turbines”, International Journal of Hydrogen Energy, Vol. 33, No. 16, pp. 4291-300, 2008
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献