Thermal and Mechanical Properties Enhancement of Cement Mortar using Phosphogypsum Waste: Experimental and Modeling Study

Author:

Ragab Ehab M.,Awwad Tarek M.ORCID,Becheikh NidhalORCID

Abstract

This research presents an in-depth investigation into the application of phosphogypsum (PG), a by-product of phosphate fertilizer plants and chemical industries, as a replacement material for cement in mortar, with a focus on enhancing its thermal and mechanical properties. The influence of PG as a partial replacement for cement on the compressive strength of mortar after 3, 7, and 28 days is investigated. Utilizing the Box-Behnken design within Response Surface Methodology, this study analyzed factors, such as sulfuric acid concentration, washing time, calcination temperature, and PG to cement ratio. Results indicate that optimal PG levels enhance mortar strength, particularly at 28 days, through sustained ettringite formation and microstructure optimization. Sulfuric acid concentration and calcination temperature were identified as the most significant elements influencing compressive strength, with the latter improving PG quality and reactivity. A PG to cement ratio up to 10% was found beneficial, while washing time had a negligible effect. The research highlights a critical synergy between the sulfuric acid concentration applied during the purification of PG and the calcination temperature. A significant improvement of 21% in compressive strength was achieved, underscoring the combined effect of chemical and thermal treatment on PG's efficacy in mortar. The increased sulfuric acid concentration is presumed to purify the PG by removing impurities, thus improving its reactivity. Concurrently, calcination alters the PG's crystalline structure and diminishes its organic composition. This interdependent optimization is instrumental in enhancing the structural integrity of PG-modified mortar. The potential for raw PG to be used as an insulating material is more pronounced at higher replacement rates (10%), while sulphuric acid treated PG (SCPG) and heat treated PG (HTPG) seem to be unable to provide a clear insulative advantage.

Publisher

Engineering, Technology & Applied Science Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3