Thermal and Mechanical Properties Enhancement of Cement Mortar using Phosphogypsum Waste: Experimental and Modeling Study
-
Published:2024-04-02
Issue:2
Volume:14
Page:13153-13159
-
ISSN:1792-8036
-
Container-title:Engineering, Technology & Applied Science Research
-
language:
-
Short-container-title:Eng. Technol. Appl. Sci. Res.
Author:
Ragab Ehab M., Awwad Tarek M.ORCID, Becheikh NidhalORCID
Abstract
This research presents an in-depth investigation into the application of phosphogypsum (PG), a by-product of phosphate fertilizer plants and chemical industries, as a replacement material for cement in mortar, with a focus on enhancing its thermal and mechanical properties. The influence of PG as a partial replacement for cement on the compressive strength of mortar after 3, 7, and 28 days is investigated. Utilizing the Box-Behnken design within Response Surface Methodology, this study analyzed factors, such as sulfuric acid concentration, washing time, calcination temperature, and PG to cement ratio. Results indicate that optimal PG levels enhance mortar strength, particularly at 28 days, through sustained ettringite formation and microstructure optimization. Sulfuric acid concentration and calcination temperature were identified as the most significant elements influencing compressive strength, with the latter improving PG quality and reactivity. A PG to cement ratio up to 10% was found beneficial, while washing time had a negligible effect. The research highlights a critical synergy between the sulfuric acid concentration applied during the purification of PG and the calcination temperature. A significant improvement of 21% in compressive strength was achieved, underscoring the combined effect of chemical and thermal treatment on PG's efficacy in mortar. The increased sulfuric acid concentration is presumed to purify the PG by removing impurities, thus improving its reactivity. Concurrently, calcination alters the PG's crystalline structure and diminishes its organic composition. This interdependent optimization is instrumental in enhancing the structural integrity of PG-modified mortar. The potential for raw PG to be used as an insulating material is more pronounced at higher replacement rates (10%), while sulphuric acid treated PG (SCPG) and heat treated PG (HTPG) seem to be unable to provide a clear insulative advantage.
Publisher
Engineering, Technology & Applied Science Research
Reference27 articles.
1. C. Maraveas, "Production of Sustainable Construction Materials Using Agro-Wastes," Materials, vol. 13, no. 2, Jan. 2020, Art. no. 262. 2. K. Srivastava, A. Srivastava, P. Singh, R. S. Jagadish, R. Verma, and V. Jaiswal, "Role of Eco-Friendly Materials in Construction for Making Cities Smart: A Case Study of Noida and Greater Noida," in Making Cities Resilient, V. R. Sharma and Chandrakanta, Eds. New York, NY, USA: Springer, 2019, pp. 235–252. 3. A. Nowotna, B. Pietruszka, and P. Lisowski, "Eco-Friendly Building Materials," IOP Conference Series: Earth and Environmental Science, vol. 290, no. 1, Mar. 2019, Art. no. 012024. 4. "Precast Concrete Market Size, Share & Trends Analysis Report By Product (Structural Building Components, Transportation Products), By Application (Residential, Commercial, Infrastructure), And Segment Forecasts, 2024 - 2030," Grand View Research, GVR-2-68038-360-7. 5. H. Vu, T. Frydl, T. Bastl, P. Dvorak, E. Kristianova, and T. Tomasko, "Recent Development in Metal Extraction from Coal Fly Ash," in Clean Coal Technologies: Beneficiation, Utilization, Transport Phenomena and Prospective, R. K. Jyothi and P. K. Parhi, Eds. New York, NY, USA: Springer, 2021, pp. 575–603.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|