Abstract
Abstract. In lightweight constructions, clinching represents a cost-effective solution, in which joints are produced by local cold forming of the joining parts. Clinching phenomena are typically evaluated using destructive testing methods. While these methods influence the clinch point’s state, in-situ computed tomography (in-situ CT) is able to explore the clinching process with a specimen under load. Here, the path-controlled clinching process is interrupted at certain displacement levels and the specimen is scanned by CT while remaining in a stationary state. These interruptions are always accompanied by settling effects reducing the reaction force. Therefore, in this work, the influence of these interruptions on the force-displacement behavior during clinching and on the final clinch point’s geometric properties is investigated.
Publisher
Materials Research Forum LLC