Form-based manufacturing of aluminium and steel auxiliary joining elements as the basis for an efficient joining operation

Author:

Borgert T.

Abstract

Abstract. Reducing the weight of vehicles can significantly lower the energy or fuel consumed and thus the emissions during operation. One possibility to assess this is the use of a property adapted multi-material systems containing high strength steel, light metals like aluminium or magnesium and fibre reinforced plastics. While expanding the number of materials used new challenges arise for the production and furthermore the joining technology to manufacture the vehicle made of the multi-material systems. One approach to overcome these challenges is to use innovative and adaptable joining techniques which allows the manufacturing of joints of different material combinations. Extensive research activities on the two stage thermo-mechanical joining process with adaptable joining elements was able to demonstrate the great potentials in terms of joining dissimilar materials with good strength. The previously kinematic and path-based fabrication of auxiliary joining elements is modified in this publication to a form-based approach with a perspective of establishing an efficient process chain using easily and cheaply available rods. Based on the new approach to produce the auxiliary joining elements, it can be demonstrated that a reproducible production of the geometry is possible for the investigated steel as well as aluminium material.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3