Surrogate model to describe temperature field in real-time for hot forging

Author:

MIDAOUI Aya

Abstract

Abstract. In the context of certain metallic alloys, the conformity of the product depends on its metallurgical structure. Addressing this, the implementation of a real-time monitoring system to control the evolution of the metallurgical structure and the geometry of the cogging part is proposed. Focusing on the microstructure's dependence on temperature, this article outlines the requested steps for developing data-driven reduced models for describing the temperature field in the billet. These models use temperature data collected from predictive numerical simulations conducted using FORGE® software. Applying the Proper Orthogonal Decomposition (POD) technique, the images illustrating the temperature field are reconstructed through a 2D matrix-based framework. This matrix, derived from non-discretized elements issued from FORGE®, underwent discretization through an objective method, resulting in a size of 100*100. The utilization of the POD technique in this approach provides a parametric vector description, facilitating rapid image reconstruction through manipulation of vector system parameters. With just two vectors, we can effectively reconstruct the image representing the temperature field.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3