Analysis of Differentially Expressed MicroRNAs in OVA-induced Airway Remodeling Mice Model

Author:

Xu Chang,Song Yilan,Wang Chongyang,Jiang Jingzhi,Wang Zhiguang,Li Liangchang,Yan Guanghai

Abstract

MicroRNAs (miRNAs) can participate in airway remodeling by regulating immune  molecule expression. Here, we aimed to identify the differential miRNAs involved in airway remodeling. Airway remodeling was induced by ovalbumin in female BALB/C mice. The differentially expressed miRNAs were screened with microarray. GO (Gene Ontology) and KEGG enrichment analysis was performed. The miRNA target gene network and miRNA target pathway network were constructed. Verification with real-time PCR and Western blot was performed. We identified 63 differentially expressed miRNAs (50 up-regulated and 13 down-regulated) in the lungs of ovalbumin-induced airway remodeling mice. Real-time PCR confirmed that 3 miRNAs (mmu-miR-1931, mmu-miR-712-5p, and mmu-miR-770-5p) were significantly up-regulated, and 4 miRNAs (mmu-miR-128-3p, mmu-miR-182-5p, mmu-miR-130b-3p, and mmu-miR-20b-5p) were significantly down-regulated. The miRNA target gene network analysis identified key mRNAs in the airway remodeling, such as Tnrc6b (trinucleotide repeat containing adaptor 6B), Sesn3 (sestrin 3), Baz2a(bromodomain adjacent to zinc finger domain 2a), and Cux1 (cut like homeobox 1). The miRNA target pathway network showed that the signal pathways such as MAPK (mitogen-activated protein kinase), PI3K/Akt (phosphoinositide 3-Kinase/protein kinase B), p53 (protein 53), and mTOR (mammalian target of rapamycin) were closely related to airway remodeling in asthma. Collectively, differential miRNAs involved in airway remodeling (such as mmu-miR-1931, mmu-miR-712-5p, mmu-miR-770-5p, mmu-miR-128-3p mmu-miR-182-5p, and mmu-miR-130b-3p) as well as their target genes (such as Tnrc6b, Sesn3, Baz2a, and Cux1) and pathways (such as MAPK, PI3K/Akt, p53, mTOR pathways) have been identified. Our findings may help to further understand the pathogenesis of airway remodeling.

Publisher

Knowledge E DMCC

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3