MicroRNA-122 Is More Effective than Rapamycin in Inhibition of Epithelial-mesenchymal Transition and mTOR Signaling Pathway in Triple Negative Breast Cancer

Author:

Ghalavand Majdedin,Dorostkar Ruhollah,Borna Hojat,Mohammadi-Yeganeh Samira,Hashemi Seyed Mahmoud

Abstract

  The fundamental mechanism responsible for the aggressiveness of metastatic cancers such as triple-negative breast cancer (TNBC) is the epithelial-mesenchymal transition (EMT). In cancer microenvironments, the Phosphoinositide 3-kinases (PI3K)-Akt- mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating the EMT mechanism. The current study focuses on the impacts of rapamycin, a newly retargeted chemotherapeutic agent against mTOR, and MicroRNA (miR)-122 on the aggressive behavior of TNBC.  The half-maximal inhibitory concentration (IC50) of rapamycin on 4T1 cells was determined using an MTT assay. Also, miR-122 was transiently transfected into 4T1 cells to study its effect on the pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression level of central mTOR and EMT-related cascade genes. Moreover, cell mobility and migration were evaluated using scratch and migration assays, respectively. Both rapamycin and miR-122 significantly decreased the expression levels of PI3K, AKT, and mTOR, as well as ZeB1 and Snail genes. However, no significant change was observed in Twist gene expression. Furthermore, scratch and migration assays revealed that the migration of 4T1 cells was markedly reduced, especially following miR-122 induction. Our experimental findings and gene enrichment studies indicated that miR-122 mainly operates on multiple metabolic pathways, as well as EMT and mTOR, while rapamycin has restricted targets in cancer cells. Consequently, miR-122 can be considered a potential cancer microRNA therapy option, which can be validated in the future in animal studies to demonstrate its efficacy in cancer control.

Publisher

Knowledge E DMCC

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3