Determination of imipenem efflux-mediated resistance in Acinetobacter spp., using an efflux pump inhibitor

Author:

Amiri Ghazale,Abbasi Shaye Maryam,Bahreini Masoumeh,Mafinezhad Asghar,Ghazvini Kiarash,Sharifmoghadam Mohammad Reza

Abstract

Background and Objectives: In recent years, reports of Acinetobacter strains resistant to all known antibiotics have caused a great concern in medical communities. Overexpression of efflux pumps is one of the major causes of resistance in bacteria. The aim of this study was to investigate the role of efflux pumps in conferring resistance to imipenem in clinically important Acinetobacter spp; Acinetobacter baumannii and Acinetobacter lwoffii. Materials and Methods: A total number of 46 clinical Acinetobacter isolates, including 33 A. baumannii and 13 A. lwoffii isolates, previously collected from Shahid Kamyab and Ghaem hospitals of Mashhad, Iran were used in this study. Imipenem susceptibility testing was carried out by the disc diffusion method. Imipenem minimum inhibitory concentration (MIC) for resistant Acinetobacter isolates were determined both in the presence and absence of the efflux pumps inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Results: Resistance to imipenem was observed in 38 isolates including 30 A. baumannii and 8 A. lwoffii isolates. Experiments in the presence of CCCP showed a 2 to 16384 fold reduction in imipenem MICs in 14 A. baumannii and 2 A. lwoffii isolates. Conclusion: The results obtained showed high levels of resistance to imipenem and contribution of efflux pumps in conferring resistance in both Acinetobacter species in this study. Moreover, imipenem efflux mediated resistance highlights the importance of this mechanism not only in A. baumannii but also in non-baumannii Acinetobacter Spp. which have been neglected in antibiotic resistance studies.

Publisher

Knowledge E

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3