Validation of the narcosis target lipid model for petroleum products: Gasoline as a case study

Author:

McGrath Joy A.1,Parkerton Thomas F.2,Hellweger Ferdi L.3,Di Toro Dominic M.41

Affiliation:

1. HydroQual, Mahwah, New Jersey 07430, USA

2. ExxonMobil Biomedical Sciences, Annandale, New Jersey 08801, USA

3. Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA

4. Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, USA

Abstract

Abstract The narcosis target lipid model (NTLM) was used to predict the toxicity of water-accommodated fractions (WAFs) of six gasoline blending streams to algae (Pseudokirchnereilla subcapitata, formerly Selenastrum capricornutum), juvenile rainbow trout (Oncorhynchus mykiss), and water flea (Daphnia magna). Gasolines are comprised of hydrocarbons that on dissolution into the aqueous phase are expected to act via narcosis. Aquatic toxicity data were obtained using a lethal-loading test in which WAFs were prepared using different gasoline loadings. The compositions of the gasolines were determined by analysis of C3 to C13 hydrocarbons grouped in classes of n-alkanes, iso-alkanes, aromatics, cyclic alkanes, and olefins. A model was developed to compute the concentrations of hydrocarbon blocks in WAFs based on gasoline composition and loading. The model accounts for the volume change of the gasoline, which varies depending on loading and volatilization loss. The predicted aqueous composition of WAFs compared favorably to measurements, and the predicted aqueous concentrations of WAFs were used in the NTLM to predict the aquatic toxicity of the gasolines. For each gasoline loading and species, total toxic units (TUs) were computed with an assumption of additivity. The acute toxicity of gasolines was predicted to within a factor of two for algae and daphnids. Predicted TUs overestimated toxicity to trout because of experimental factors that were not considered in the model. This analysis demonstrates the importance of aliphatic hydrocarbon loss to headspace during WAF preparation and the contribution of both aromatic and aliphatic hydrocarbons test to the toxicity of gasolines in closed systems and loss of aliphatics to headspace during WAF preparation. Model calculations indicate that satisfactory toxicity predictions can be achieved by describing gasoline composition using a limited number of aromatic and aliphatic hydrocarbon blocks with different octanol-water partition coefficients.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3