A comparative study of microstructure and mechanical properties of conventional and synergistic double-sided FSW joints of 6061 zxaluminium alloy

Author:

Zou Yangfan1,Li Wenya1ORCID,Tang Yishuang1,Su Yu1,Yang Xiawei1,Wu Dong1,Wang Weibing2

Affiliation:

1. State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an, People's Republic of China

2. Beijing Solidwel Intelligent Technology Co., Ltd, Beijing, People's Republic of China

Abstract

In this study, synergistic double-sided friction stir welding (DS-FSW) is proposed to solve the problems of large deformation and the time-consuming of traditional DS-FSW. The microstructure, mechanical properties, and fracture paths of novel and conventional joints are studied under different welding parameters. Results show that defects in novel joints have been improved. However, the grain size in the stir zone of novel joints is larger than that of conventional joints. The microhardness map of the novel joint shows a more uniform distribution compared to that of the conventional joint. At a rotational speed of 1800 rpm and transverse speed of 1000 mm min−1, the distortion of the novel joint and conventional joint is 0.1 and 1 mm, respectively. The tensile force of novel joints is higher than that of conventional joints for the same welding parameters. The maximum tensile force of novel and conventional joints is 36.8 and 34.9 kN, respectively.

Funder

National Natural Science Foundation of China

State Key Laboratory of Solidification Processing

Research Fund of the State Key Laboratory of Solidification Processing

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3