Multi-Deep CNN based Experimentations for Early Diagnosis of Breast Cancer
Author:
Affiliation:
1. Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638401, India
2. Department of Computer Science and Engineering, Dayananda Sagar University, Bangalore, India
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Computer Science Applications,Theoretical Computer Science
Link
https://www.tandfonline.com/doi/pdf/10.1080/03772063.2022.2028584
Reference54 articles.
1. Sliding Window Based Support Vector Machine System for Classification of Breast Cancer Using Histopathological Microscopic Images
2. Automated Computer Aided Diagnosis Using Altered Multi-Phase Level Sets in Application to Categorize the Breast Cancer Biopsy Images
3. Performance analysis and detection of micro calcification in digital mammograms using wavelet features
4. A comparison of detrend fluctuation analysis, Gaussian mixture model and artificial neural network performance in the detection of microcalcification from digital mammograms
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An intelligent healthcare framework for breast cancer diagnosis based on the information fusion of novel deep learning architectures and improved optimization algorithm;Engineering Applications of Artificial Intelligence;2024-11
2. An optimized model based on adaptive convolutional neural network and grey wolf algorithm for breast cancer diagnosis;PLOS ONE;2024-08-19
3. Adaptive Mish activation and ranger optimizer-based SEA-ResNet50 model with explainable AI for multiclass classification of COVID-19 chest X-ray images;BMC Medical Imaging;2024-08-09
4. Multi-class Breast Cancer Classification Using CNN Features Hybridization;International Journal of Computational Intelligence Systems;2024-07-22
5. Advancements and Prospects of Machine Learning in Medical Diagnostics: Unveiling the Future of Diagnostic Precision;Archives of Computational Methods in Engineering;2024-06-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3