Machine learning methods’ performance in radiative transfer model inversion to retrieve plant traits from Sentinel-2 data of a mixed mountain forest

Author:

Ali Abebe Mohammed12ORCID,Darvishzadeh Roshanak1ORCID,Skidmore Andrew13ORCID,Gara Tawanda W.14ORCID,Heurich Marco56ORCID

Affiliation:

1. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands

2. Department of Geography and Environmental Studies, Wollo University, Dessie, Ethiopia

3. Department of Environmental Science, Macquarie University, Sydney, Australia

4. Department of Geography and Environmental Science, University of Zimbabwe, Harare, Zimbabwe

5. Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Grafenau, Germany

6. Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Germany

Publisher

Informa UK Limited

Subject

General Earth and Planetary Sciences,Computer Science Applications,Software

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vegetation spectra as an integrated measure to explain underlying soil characteristics: a review of recent advances;Frontiers in Environmental Science;2024-09-11

2. Monitoring cropland LAI using Gaussian Process Regression and sentinel – 2 surface reflectance data in Google Earth Engine;International Journal of Remote Sensing;2024-07-09

3. Enhancing Chlorophyll Content Estimation With Sentinel-2 Imagery: A Fusion of Deep Learning and Biophysical Models;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

4. Synergistic retrieval of mangrove vital functional traits using field hyperspectral and satellite data;International Journal of Applied Earth Observation and Geoinformation;2024-07

5. Calculating Leaf Area Index Using Neural Network and WorldView 3 Multispectral Imagery;2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST);2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3