Federated machine learning for privacy preserving, collective supply chain risk prediction
Author:
Affiliation:
1. Institute for Manufacturing, University of Cambridge, Cambridge, United Kingdom
Funder
Engineering and Physical Sciences Research Council
Publisher
Informa UK Limited
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Strategy and Management
Link
https://www.tandfonline.com/doi/pdf/10.1080/00207543.2022.2164628
Reference64 articles.
1. Applying digital twins for inventory and cash management in supply chains under physical and financial disruptions
2. Barros J. J. N. Gonçalves P. Cortez and M. S. Carvalho. 2022. “A machine learning strategy for estimating supply lead times towards improved safety stock dimensioning.” Available at SSRN 4118108 .
3. Supply chain risk management and artificial intelligence: state of the art and future research directions
4. Briggs C. Z. Fan and P. Andras. 2021. “Federated learning for short-term residential energy demand forecasting.” arXiv preprint arXiv:2105.13325 .
5. Brintrup A. 2020. “Artificial intelligence in the supply chain.” The Oxford Handbook of Supply Chain Management .
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial intelligence in supply chain management: A systematic literature review of empirical studies and research directions;Computers in Industry;2024-11
2. Internal- and external-sourcing strategy analysis of group manufacturing enterprises under semiconductor supply chain disruption risk;International Journal of Production Economics;2024-10
3. Supply chain resilience: Conceptual and formal models drawing from immune system analogy;Omega;2024-09
4. The Impact of Supply Chain Delays on Inventory Levels and Sale Demand Fulfillment: Analyzing the Effects of Lead Times and In-Transit Quantities;Engineering, Technology & Applied Science Research;2024-08-02
5. AI adoption in supply chain management: a systematic literature review;Journal of Manufacturing Technology Management;2024-07-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3