Optimizing SVM models as predicting tools for sewer pipes conditions in the two main cities in Colombia for different sewer asset management purposes
Author:
Affiliation:
1. Civil Engineering Department, Pontificia Universidad Javeriana, Bogotá, Colombia;
2. Urban water department, Kompetenzzentrum Wasser Berlin, Berlin, Germany
Publisher
Informa UK Limited
Subject
Mechanical Engineering,Ocean Engineering,Geotechnical Engineering and Engineering Geology,Safety, Risk, Reliability and Quality,Building and Construction,Civil and Structural Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/15732479.2020.1733029
Reference43 articles.
1. Benefits of using basic, imprecise or uncertain data for elaborating sewer inspection programmes
2. Modeling the structural deterioration of urban drainage pipes: the state-of-the-art in statistical methods
3. Assessment of Infrastructure Inspection Needs Using Logistic Models
4. AWWA (2012). Buried no longer: confronting America’s water infrastructure challenge, AWWA’s infrastructure financing report. Boulder, CO.
5. Estimating Transition Probabilities in Markov Chain-Based Deterioration Models for Management of Wastewater Systems
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A machine learning approach for predicting and localizing the failure and damage point in sewer networks due to pipe properties;Journal of Water and Health;2024-02-05
2. Street closure prediction based on the combined conditions of spatially collocated municipal infrastructure assets at the segment level;Expert Systems with Applications;2023-06
3. A Deterioration Model for Sewer Pipes Using CCTV and Artificial Intelligence;Buildings;2023-04-03
4. RS-SVM Machine Learning Approach Driven by Case Data for Selecting Urban Drainage Network Restoration Scheme;Data Intelligence;2022-10-01
5. Performance assessment of deteriorating reinforced concrete drainage culverts: A case study;Engineering Failure Analysis;2022-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3