Affiliation:
1. Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA
2. Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Abstract
Nuclear receptors (NRs) are attractive drug targets due to their role in regulation of a wide range of physiologic responses. In addition to providing therapeutic value, many pharmaceutical agents along with environmental chemicals are ligands for NRs and can cause adverse health effects that are directly related to activation of NRs. Identifying the molecular events that produce a toxic response may be confounded by the fact that there is a significant overlap in the biological processes that NRs regulate. Microarrays and other methods for gene expression profiling have served as useful, sensitive tools for discerning the mechanisms by which therapeutics and environmental chemicals invoke toxic effects. The capability to probe thousands of genes simultaneously has made genomics a prime technology for identifying drug targets, biomarkers of exposure/toxicity and key players in the mechanisms of disease. The complex intertwining networks regulated by NRs are hard to probe comprehensively without global approaches and genomics has become a key technology that facilitates our understanding of NR-dependent and -independent events. The future of drug discovery, design and optimization, and risk assessment of chemical toxicants that activate NRs will inevitably involve genomic profiling. This review will focus on genomics studies related to PPAR, CAR, PXR, RXR, LXR, FXR, and AHR.
Subject
Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献