Genomic Profiling in Nuclear Receptor-Mediated Toxicity

Author:

Woods Courtney G.1,Vanden Heuvel John P.2,Rusyn Ivan1

Affiliation:

1. Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA

2. Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania 16802, USA

Abstract

Nuclear receptors (NRs) are attractive drug targets due to their role in regulation of a wide range of physiologic responses. In addition to providing therapeutic value, many pharmaceutical agents along with environmental chemicals are ligands for NRs and can cause adverse health effects that are directly related to activation of NRs. Identifying the molecular events that produce a toxic response may be confounded by the fact that there is a significant overlap in the biological processes that NRs regulate. Microarrays and other methods for gene expression profiling have served as useful, sensitive tools for discerning the mechanisms by which therapeutics and environmental chemicals invoke toxic effects. The capability to probe thousands of genes simultaneously has made genomics a prime technology for identifying drug targets, biomarkers of exposure/toxicity and key players in the mechanisms of disease. The complex intertwining networks regulated by NRs are hard to probe comprehensively without global approaches and genomics has become a key technology that facilitates our understanding of NR-dependent and -independent events. The future of drug discovery, design and optimization, and risk assessment of chemical toxicants that activate NRs will inevitably involve genomic profiling. This review will focus on genomics studies related to PPAR, CAR, PXR, RXR, LXR, FXR, and AHR.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3