A Mixture of Ammonium Perchlorate and Sodium Chlorate Enhances Alterations of the Pitutary-Thyroid Axis Caused by the Individual Chemicals in Adult Male F344 Rats

Author:

Khan Moazzam A.12,Fenton Suzanne E.3,Swank Adam E.2,Hester Susan D.2,Williams A.4,Wolf Douglas C.2

Affiliation:

1. National Research Council

2. Environmental Carcinogenesis Divisions, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

3. Reproductive Toxicology

4. Health Canada, Ottawa, Ontario, Canada

Abstract

Ammonium perchlorate (AP) and sodium chlorate (SC) have been detected in public drinking water supplies in many parts of the United States. These chemicals cause perturbations in pituitary-thyroid homeostasis in animals by competitively inhibiting iodide uptake, thus hindering the synthesis of thyroglobulin and reducing circulating T4 (thyroxine). Little is known about the short-term exposure effects of mixtures of perchlorate and chlorate. The present study investigated the potential for the response to a mixture of these chemicals on the pituitary-thyroid axis in rats to be greater than that induced by the individual chemicals. Adult male F-344 rats were exposed, via their drinking water, to the nominal concentrations of 0.1, 1.0, 10 mg/L AP or 10, 100, 1000 mg/L SC and their mixtures for 7 days. Serum T4 levels were significantly ( p < 0.05) reduced in rats following exposure to the mixtures, but not after exposure to the individual chemicals. Serum T3 (triiodothyronine) was not altered by treatment and TSH (thyroid stimulating hormone) was only increased after the high-dose chlorate treatment. Histological examination of the thyroid gland showed colloid depletion and hypertrophy of follicular epithelial cells in high-dose single chemical and all mixture-treated rats, while hyperplasia was observed only in some of the rats treated with mixtures (AP 10 + SC 100, AP 0.1 + SC 1000, and AP 10 + SC 1000 mg/L). These data suggest that short-term exposure to the mixture of AP and SC enhances the effect of either chemical alone on the pituitary-thyroid axis in rats.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3