Coordination of sniffing and whisking depends on the mode of interaction with the environment

Author:

Fonio Ehud1,Gordon Goren2,Barak Noy3,Winetraub Yonatan4,Oram Tess Baker4,Haidarliu Sebastian4,Kimchi Tali4,Ahissar Ehud4

Affiliation:

1. Department of Physics of Complex Systems, Weizmann Institute of Science

2. Department of Industrial Engineering, Tel-Aviv University

3. Department of Neurobiology, Weizmann Institute of Science

4. Department of Structural Biology, Stanford University

Abstract

Smell and touch convey most of the information that nocturnal rodents collect in their natural environments, each via its own complex network of muscles, receptors and neurons. Being active senses, a critical factor determining the integration of their sensations relates to the degree of their coordination. While it has been known for nearly 50 years that sniffing and whisking can be coordinated, the dynamics of such coordination and its dependency on behavioral and environmental conditions are not yet understood. Here we introduce a novel non-invasive method to track sniffing along with whisking and locomotion using high-resolution video recordings of mice, during free exploration of an open arena. Active sensing parameters in each modality showed significant dependency on exploratory modes (“Outbound”, “Exploration” and “Inbound”) and locomotion speed. Surprisingly, the correlation between sniffing and whisking was often as high as the bilateral inter-whisker correlation. Both inter-whisker and inter-modal coordination switched between distinct high-correlation and low-correlation states. The fraction of time with high-correlation states was higher in the Outbound and Exploration modes compared with the Inbound mode. Overall, these data indicate that sniffing–whisking coordination is a complex dynamic process, likely to be controlled by multiple-level inter-modal coordinated loops of motor-sensory networks.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3