Investigation on the Genetic-Inconsistent Paternity Cases Using the MiSeq FGx System

Author:

Chen Anqi12,Tao Ruiyang1,Li Chengtao12ORCID,Zhang Suhua1ORCID

Affiliation:

1. Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice , Shanghai , China

2. Department of Forensic Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , China

Abstract

Abstract Mutations might challenge the paternity index calculation in forensic identification. While many studies have focussed on the autosomal short tandem repeats (A-STR), the mutation status of sex chromosomes and single nucleotide polymorphism (SNP) remain blank. Next generation sequencing (NGS), known as high throughput and large sequence polymorphism, is a promising tool for forensic genetics. To describe the mutation landscapes in the paternity cases with genetic inconsistencies, a total of 63 parentage confirmed paternity cases contained at least one mismatched locus have been collected. The mutations were subsequently evaluated using Verogen’s MPS ForenSeqTM DNA Signature Kit and a microsatellite instability (MSI) detection kit. The result showed 98.41% (62/63) of the cases had no additional autosomal mutations even when the number of A-STRs increased to 27. As for the sex chromosomes, about 11.11% (7/63) of the cases exhibited either X-STR or Y-STR mutations. D2S1338, FGA and Penta E were the most frequent altered STRs, which suggested they might be the mutation hotspots. In addition, a male with sex chromosome abnormality was observed accidently, whose genotype might be 47, XXY, rather than MSI. Nearly 56.90% of the STR loci possessed isoalleles, which might result in higher STR polymorphisms. No Mendelian incompatibility was detected among the SNP markers, which indicated that SNP was a more reliable genetic marker in the genetic-inconsistent paternity cases.

Funder

National Youth Top-notch Talent of Ten Thousand Program

Youth Science and technology innovation leader of Ten Thousand Program

Publisher

Oxford University Press (OUP)

Subject

Psychiatry and Mental health,Physical and Theoretical Chemistry,Anthropology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Pathology and Forensic Medicine,Analytical Chemistry

Reference29 articles.

1. Molecular DNA analysis in forensic identification;Dumache;Clin Lab,2016

2. Microsatellites: simple sequences with complex evolution;Ellegren;Nat Rev Genet,2004

3. Mutation analysis of 21 autosomal short tandem repeats in Han population from Hunan, China;Xu;Ann Hum Biol,2019

4. Mutation rate at commonly used forensic STR loci: paternity testing experience;Aşicioglu;Dis Markers,2004

5. Mutations of short tandem repeat loci in cases of paternity testing in Chinese;Sun;Int J Legal Med,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3