A multi-input parallel convolutional attention network for tool wear monitoring
Author:
Affiliation:
1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin, China
2. Postdoctoral Mobile Station of Instrument Science and Technology, Harbin University of Science and Technology, Harbin, China
Funder
Natural Science Outstanding Youth Fund of Heilongjiang Province
Heilongjiang Province General Undergraduate Colleges and Universities Young Innovative Talents Training Plan
Manufacturing Science and Technology Innovation Talents Project of Harbin City
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Aerospace Engineering
Link
https://www.tandfonline.com/doi/pdf/10.1080/0951192X.2023.2294440
Reference31 articles.
1. Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique
2. Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy
3. Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification
4. Intelligent tool wear monitoring and multi-step prediction based on deep learning model
5. An online belt wear monitoring method for abrasive belt grinding under varying grinding parameters
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Real-time tool condition monitoring with the internet of things and machine learning algorithms;International Journal of Computer Integrated Manufacturing;2024-09-06
2. Mechanical vibration signal compression based on speech codecs for intelligent manufacturing;International Journal of Computer Integrated Manufacturing;2024-07-26
3. DP2Net: A discontinuous physical property-constrained single-source domain generalization network for tool wear state recognition;Mechanical Systems and Signal Processing;2024-06
4. An Advanced Tool Wear Forecasting Technique with Uncertainty Quantification Using Bayesian Inference and Support Vector Regression;Sensors;2024-05-24
5. Quantitative Assessment of Pipeline Defects Utilizing a Dual-Stage Deep Learning Framework: Integration of Pretrained Yolov8 and Cnn Architectures on Magnetic Flux Leakage Data;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3