Regulation of Epithelial-Mesenchymal Transition of A549 Cells by Prostaglandin D2

Author:

Abstract

BACKGROUND/AIMS: Despite significant advances in diagnostic and operative techniques, lung cancer remains one of the most lethal malignancies worldwide. Since prostaglandins such as prostaglandin D2 (PGD2) is involved in various pathophysiological process, including inflammation and tumorigenesis, this study aims to investigate the role of PGD2 during the process of epithelial-mesenchymal transition (EMT) in A549 cells. METHODS: A549 cells were stimulated with PGD2 and expression of EMT markers was analyzed by immunoblotting and immunofluorescence. EMT-related gene, Slug expression was evaluated using quantitative real-time polymerase chain reaction (qPCR). Migration and invasion abilities of A549 cells were determined in chemotaxis and Matrigel invasion assays, respectively. We also inhibited the TGF/Smad signaling pathway using a receptor inhibitor or silencing of TGF-β1 and TGFβ type I receptor (TGFβRI), and protein expression was assessed by immunoblotting and immunofluorescence. RESULTS: Here, we found that stimulation of A549 cells with PGD2 resulted in morphological changes into a mesenchymal-like phenotype under low serum conditions. Stimulation of A549 cells with PGD2 resulted in a significant reduction in proliferation, whereas invasion and migration were enhanced. The expression of E-cadherin was markedly downregulated, while Vimentin expression was upregulated after treatment of A549 cells with PGD2. Slug expression was markedly upregulated by stimulating A549 cells with PGD2, and stimulation of A549 cells with PGD2 significantly enhanced TGF-β1 expression, and silencing of TGF-β1 significantly blocked PGD2-induced EMT and Smad2 phosphorylation. In addition, PGD2-induced Smad2 phosphorylation and EMT were significantly abrogated by either pharmacological inhibition or silencing of TGFβRI. PGD2-induced expression of Slug and EMT were significantly augmented in low nutrient and low serum conditions. Finally, the subsequent culture of mesenchymal type of A549 cells under normal culture conditions reverted the cell's phenotype to an epithelial type. CONCLUSION: Given these results, we suggest that tumor microenvironmental factors such as PGD2, nutrition, and growth factors could be possible therapeutic targets for treating metastatic cancers.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3