Corrosion resistance and conductivity of CrN, CrAlN, and CrTiN coatings applied to bipolar plates for proton exchange membrane fuel cells

Author:

Chen Qiang1ORCID,Su Mingxu1,Liang Dandan2,Zhou Qiong2,Huang Biao2,Zhang Ergeng2ORCID

Affiliation:

1. School of Energy and Power Engineering, University of Shanghai for Science and Technology 1 , Shanghai 200093, China

2. Shanghai Engineering Research Center of Physical Vapor Deposition (PVD) Superhard Coating and Equipment, Shanghai Institute of Technology 2 , Shanghai 201418, China

Abstract

In order to improve the corrosion resistance and conductivity of 316L stainless steel bipolar plates used for proton exchange membrane fuel cells, three Cr-containing nitride coatings were deposited on 316L stainless steel by multiarc ion plating. First, the microstructure, composition, and contact angle of the three coatings were systematically investigated. Then, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostatic polarization (PSP), and interfacial contact resistance (ICR) of the three coatings were also fully examined. The results revealed that CrN coating has the highest contact angle of 98.26°, indicating its superior hydrophobicity. Additionally, CrN coating performed the best corrosion resistance with the highest corrosion potential of 0.31 V, the lowest corrosion current density of 2.28 × 10−7 A cm−2, and the largest resistance. Furthermore, CrN coating showed the lowest current density during PSP tests and the smallest ICR value after corrosion. The superior corrosion resistance of CrN coating is mainly attributed to its decreased pore density caused by vacancylike defects and its uniform structure. This article provided evidence for the potential application of CrN coating to bipolar plates.

Funder

National Natural Science Foundation of China

Program of Shanghai Technology Research Leader

Publisher

American Vacuum Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3